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Abstract
A class of periodic soliton cellular automata is introduced associated with
crystals of non-exceptional quantum affine algebras. Based on the Bethe ansatz
at q = 0, we propose explicit formulae for the dynamical period and the size
of certain orbits under the time evolution in the A(1)

n case.

PACS numbers: 02.20.Uw, 02.30.Ik, 05.45.Yv

1. Introduction

The box–ball system [TS, T] is a soliton cellular automaton on a one-dimensional lattice. It
is an ultradiscrete integrable system [TTMS] that exhibits factorized scattering and has been
studied from a variety of aspects. Among them, an efficient viewpoint is a solvable vertex
model in statistical mechanics [B] at q = 0, where the time evolution of the box–ball system
is identified with the action of a transfer matrix. It has led to a direct formulation [HHIKTT,
FOY] by the crystal base theory, a theory of quantum group at q = 0 [K], and generalizations
associated with quantum affine algebras [HKT1, HKOTY]. For some latest developments
along this line, see [IKO, KOY]. These studies are based on the idea of commuting transfer
matrices [B]. As a method of analysing solvable lattice models, it is complementary to the
most efficient technique known as the Bethe ansatz [Be]; therefore, it is natural to seek its
application to the box–ball system and its generalizations.

The aim of this paper is to extend the box–ball system to periodic versions and launch
a Bethe ansatz approach to them. For non-exceptional affine Lie algebra gn, we construct a
periodic ultradiscrete dynamical system that tends to the gn automaton [HKT1] in an infinite
lattice limit. Here is an example of the time evolution pattern for gn = A

(1)
2 :

t = 0 : 1 1 2 1 3 2

t = 1 : 3 2 1 2 1 1

t = 2 : 1 1 3 1 2 2

t = 3 : 2 2 1 3 1 1

t = 4 : 1 1 2 2 3 1
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t = 5 : 2 1 1 1 2 3

t = 6 : 1 3 2 1 1 2

t = 7 : 2 1 1 3 2 1

t = 8 : 1 2 2 1 1 3

t = 9 : 3 1 1 2 2 1

t = 10 : 2 3 1 1 1 2

t = 11 : 1 2 3 2 1 1

t = 12 : 1 1 2 1 3 2.

Regarding the letter 1 as background, one observes two solitons proceeding cyclically to the
right with velocity = amplitude equal to 2 and 1. They repeat collisions (or overtaking) under
which the reactions 32× 2 → 3 × 22 and 22 × 3 → 2 × 32 take place. Behind such dynamics
there underlies a solvable vertex model at q = 0, where only some selected configurations
have non-zero Boltzmann weights and the transfer matrix yields a deterministic evolution of
the spins on one row to another. For instance, the transition from t = 0 to t = 2 states has
been determined from the configuration in figure 1 on a two-dimensional square lattice.

This is a configuration of the fusion Uq

(
A

(1)
2

)
vertex model that survives at q = 0. In

the terminology of quantum inverse scattering method [STF], the quantum space on vertical
lines carries the fundamental representation (1, 2 or 3) of A2 = sl3 and the auxiliary space
on horizontal lines does the three-fold symmetric tensor representation (111, 112, . . . , 333).
The automaton states live on the vertical lines. The dynamics is governed by combinatorial
R, which is the quantum R matrix at q = 0 specified by local configurations around a vertex.
The states on horizontal lines are so chosen that they become equal at the both ends reflecting
the periodic boundary condition.

In this paper, we introduce analogous periodic automata for any non-exceptional affine
Lie algebra gn based on the factorization of the combinatorial R [HKT2]. They may be viewed
as the system of particles that undergo pair creation and annihilation though the collisions.
Moreover, we exploit how the Bethe ansatz at q = 0 [KN] yields the dynamical period and
size of certain orbits. For instance, in the above time evolution pattern, t = 0 and t = 12
states are identical, hence the dynamical period is 12. We propose the general formula (16)
for the dynamical period in the A(1)

n case, which indeed predicts 12 in the above example. It is
expressed as a least common multiple of the rational numbers arising from Bethe eigenvalues
at q = 0.

In [KN], the Bethe equation is linearized into the string centre equation and an explicit
character formula (23) has been established by counting off-diagonal solutions to the string
centre equation. It is a version of fermionic formulae and is called the combinatorial
completeness of the Bethe ansatz at q = 0. In (24), we relate each summand (22) in the
character formula to the size of a certain orbit under the time evolution. Such a result will be
useful to study the entropy of the automata.

The formulae for the dynamical period (16) and the orbit size (24) are novel applications
of the Bethe ansatz to ultradiscrete integrable systems. Upon identification of strings in the
Bethe ansatz with solitons in the automata, they reproduce the expressions in [YYT] for
A

(1)
1 with l = ∞. In our approach, we also use the combinatorial Bethe ansatz at q = 1

[KKR, KR], namely rigged configurations and their bijective correspondence with automaton
highest states. In this terminology, it is the configuration that plays the role of the conserved
quantity, which is an analogous feature to the infinite system [KOTY]. It is an interesting
problem to synthesize the combinatorial Bethe ansätze at q = 1 and q = 0, which will provide
a unified perspective on the automata on the infinite and the periodic lattices.
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1 1 2 1 3 2

123 112 111 112 111 113 123

3 2 1 2 1 1

111 113 123 112 122 112 111

1 1 3 1 2 2

Figure 1. A vertex configuration.

The paper is arranged as follows. In section 2, a periodic gn automaton is introduced. It
tends to that in [HKT1] in an infinite lattice limit and includes that in [YT, MIT] as a gn = A(1)

n

case. In section 3, the Bethe eigenvalues are investigated at q = 0. In section 4, the dynamical
period of the periodic automata is related to the Bethe eigenvalue studied in section 3.
In section 5, sizes of certain orbits are related to the character formula in [KN]. In the
last two sections, conjectures are presented with compelling experimental data. The states
treated there are time evolutions of the highest ones. The classes of time evolutions being
considered in sections 4 and 5 are different. In fact, the latter is wider containing the former;
therefore, the ‘period’ in section 4 is a notion different from the ‘size of orbit’ in section 5.
A more unified framework including a treatment of non-highest states will be presented
elsewhere. The last table in section 4 is a preliminary report on D

(1)
4 . For standard notations

and facts in the crystal base theory, we refer to [K, KKM, KMN].

2. Periodic gn automaton

Let Uq(gn) be the quantum affine algebra associated with non-exceptional gn =
A(1)

n , A
(2)
2n−1, A

(2)
2n , B(1)

n , C(1)
n ,D(1)

n and D
(2)
n+1. Denote by Bl the crystal of the l-fold symmetric

fusion of the vector representation of Uq(gn) [KKM]. We are going to introduce a dynamical
system on the finite tensor product B := Bl1 ⊗Bl2 ⊗· · ·⊗BlL . An element of B will be called
a path. The representative time evolution is given by

T∞ = σBSid · · · Si2Si1 . (1)

Here Si is the Weyl group operator [K] and σB =
L︷ ︸︸ ︷

σ ⊗ · · · ⊗ σ with each σ acting on the
components Bli individually according to table 1. For example, for the element 11245 ∈ B5

of A
(1)
4 represented by the semi-standard tableau, one has σ(11245) = 13455. See [HKT2],

section 2 for the notation in the other algebras. We call the dynamical system on B with the
time evolution (1) the periodic gn automaton. In case B is of the form B = B⊗L

1 , it will be
called the basic periodic gn automaton.

Let us illustrate (1) along a gn = A
(1)
2 example. The time evolution T∞ = σBS2S0 of the

t = 0 path 112132 ∈ B⊗6
1 into 3 2 1 2 1 1 at t = 1 in section 1 is computed as

0-signature
2-signaure

1−1−2
(+

1− 3
+
−)

2
+

S0�→ 1−3
+
−

2
(+

3
+
−)

3
+
−

2
+

S2�→ 1−3
+
−

2
(+

3
+
−)

2
+

2
+

σB�→ 3 2 1 2 1 1. (2)

For the first three paths, we have exhibited the 0-signature and 2-signature. In general, the i-
signature of an element a in the A

(1)
2 crystal B1 = {1, 2, 3} is the symbol + if a = i,− if a = i+1

mod 3 and none otherwise. From the array of i-signatures, one eliminates the pair +− (not −+)

successively to finally reach the pattern

α︷ ︸︸ ︷
− · · · −

β︷ ︸︸ ︷
+ · · · + called the reduced i-signature. Then the

action of Si is unambiguously defined as the interchange

α︷ ︸︸ ︷
− · · · −

β︷ ︸︸ ︷
+ · · · + �→

β︷ ︸︸ ︷
− · · · −

α︷ ︸︸ ︷
+ · · · + on
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Table 1. The data σ, d and ik .

gn σ d id , . . . , i1 W

A
(1)
n a �→ a − 1 n 2, 3, . . . , n − 1, n, 0 W(An−1)

A
(2)
2n−1 1 ↔ 1 2n − 1 0, 2, . . . , n − 1, n, n − 1, . . . , 2, 0 W(BCn−1)

A
(2)
2n id 2n 1, 2, . . . , n − 1, n, n − 1, . . . , 2, 1, 0 W(BCn−1)

B
(1)
n 1 ↔ 1 2n − 1 0, 2, . . . , n − 1, n, n − 1, . . . , 2, 0 W(BCn−1)

C
(1)
n id 2n 1, 2, . . . , n − 1, n, n − 1, . . . , 2, 1, 0 W(BCn−1)

D
(1)
n 1 ↔ 1, n ↔ n 2n − 2 0, 2, . . . , n − 2,

{
n−1,n
n,n−1

}
, n − 2, . . . , 2, 0 W(Dn−1)

D
(2)
n+1 id 2n 1, 2, . . . , n − 1, n, n − 1, . . . , 2, 1, 0 W(BCn−1)

the reduced i-signature. In (2), we have shown the elimination of the +− pairs by parentheses.
By the very same rule, the Weyl group operators in general gn and B = Bl1 ⊗ · · · ⊗ BlL can
be computed using the necessary data on Bl in [KKM].

One may question the relation between the two derivations of the time evolution
112132(t = 0) �→ 321211(t = 1), one as (2) and the other as in figure 1. Let us clarify it by
explaining the origin of (1). Recall that the automata in the infinite system [HKT1, HHIKTT,
FOY, HKOTY] have the set of states · · · ⊗ Bli ⊗ Bli+1 ⊗ · · · with the boundary condition that
the sufficiently distant local states are the highest element uli = (1li ) ∈ Bli . The commuting
family of time evolutions Tl(l ∈ Z�1) is induced by the relation

Bl ⊗ (· · · ⊗ Bli ⊗ Bli+1 ⊗ · · ·) � (· · · ⊗ Bli ⊗ Bli+1 ⊗ · · ·) ⊗ Bl

ul ⊗ p � Tl(p) ⊗ ul

(3)

under the isomorphism of crystals. It was proved in [HKT2] that Tl with sufficiently large l is
factorized as (1), where all Si actually act as ẽ∞

i . In this sense, (1) is a natural analogue of T∞
in the infinite system, which corresponds to the limit of the periodic gn automaton when the
system size L grows to infinity under the above-mentioned boundary condition. The product
(1) is a translation in the extended affine Weyl group. The indices ik in table 1 are equal to
ik+j in [HKT2] for some j . They have been chosen so that the tableau letter representing the
background or ‘empty box’ becomes 1.

Let us comment on the analogue of the time evolution Tl with finite l on our periodic gn

automaton. A natural idea is to define it by an analogue of relation (3) as vl ⊗ p � p′ ⊗ vl ,
where vl ∈ Bl is not necessarily the highest element ul in general. If such a vl exists and p′ is
unique even when vl is not unique, we set Tl(p) = p′ and say that Tl(p) exists. Tl(p) does not
always exist. For instance, in the A(1)

n case, v1 does not exist for L = l = 1, p = 12 ∈ B = B2,
and p′ is not unique for L = 2, l = 1, p = 12 ⊗ 12 ∈ B2 ⊗ B2. See section 5 for more
arguments. On the other hand, for l sufficiently large we expect that Tl(p) exists. In fact, the
following assertion is valid.

Theorem 1. Let gn = A(1)
n (hence d = n). Pick any element p ∈ B such that

ϕik (Sik−1 · · · Si1(p)) � εik (Sik−1 · · · Si1(p)) for 1 � k � d. (4)

Set vl = (x1, . . . , xn+1). Here the number xi ∈ Z�0(i ∈ Zn+1) of the letter i in the semi-
standard tableau on length l row is determined by xik = ϕik (Sik−1 · · · Si1(p)) for 1 � k � n

and x1 + · · · + xn+1 = l, which is possible for l large. Then for sufficiently large l, the relation
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vl ⊗ p � T∞(p) ⊗ vl (5)

holds under the isomorphism of crystals Bl ⊗ B � B ⊗ Bl with T∞ given by (1).

Condition (4) stated in an intrinsic manner is actually a simple postulate that among
{1, . . . , n + 1} the letter 1 should be no less than any other ones in the semi-standard tableaux
consisting of p. On the paths in figure 1 (112132, 321211, 113122 ∈ B⊗6

1 ), one has T3 = T∞.
A similar theorem is valid also for D(1)

n .
The time evolution T∞ (1) commutes with several operators acting on B, which form the

symmetry of (T∞ flow of) our periodic gn automaton. By using (1) and SiσB = σBSσ−1(i)

(see [HKT2]), it is easy to check that T∞Si = SiT∞ for i 	= 0, 1. The symmetry operators or
‘Bäcklund transformations’ {Si | 2 � i � n} form a classical Weyl group listed in the rightmost
column of table 1. This is a smaller symmetry compared with the Uq(gn−1)-invariance in the
case of the infinite system [HKOTY].

Here is an example of the time evolution (downward) in the periodic A
(1)
3 automaton with

B = B3 ⊗B1 ⊗B1 ⊗B1 ⊗B1 ⊗B2 ⊗B1. At each time step, the paths connected by the Weyl
group actions S2 and S3 are shown, forming commutative diagrams.

133 · 4 · 1 · 3 · 4 · 12 · 4
S2�→ 123 · 4 · 1 · 2 · 4 · 12 · 4

S3�→ 123 · 4 · 1 · 2 · 3 · 12 · 3

124 · 3 · 4 · 1 · 3 · 14 · 3 124 · 3 · 4 · 1 · 2 · 14 · 2 123 · 3 · 4 · 1 · 2 · 13 · 2

134 · 2 · 3 · 4 · 1 · 34 · 1 124 · 2 · 3 · 4 · 1 · 24 · 1 123 · 2 · 3 · 4 · 1 · 23 · 1

134 · 1 · 2 · 2 · 4 · 13 · 4 124 · 1 · 2 · 3 · 4 · 12 · 4 123 · 1 · 2 · 3 · 4 · 12 · 3

A similar example from the basic periodic D
(1)
4 automaton with B = B⊗12

1 is

2̄ 2 2 2 1 1 1 1 4 2̄ 1 1
S2�→ 2̄ 3 2 2 1 1 1 1 4 2̄ 1 1

S4�→ 2̄ 4̄ 2 2 1 1 1 1 3̄ 2̄ 1 1

1 1 1 1 2̄ 2 2 2 1 4 2̄ 1 1 1 1 1 2̄ 3 2 2 1 4 2̄ 1 1 1 1 1 2̄ 4̄ 2 2 1 3̄ 2̄ 1

2 1 1 1 1 1 1 1 2̄ 2 4 1̄ 2 1 1 1 1 1 1 1 2̄ 3 4 1̄ 2 1 1 1 1 1 1 1 2̄ 4̄ 3̄ 1̄

2 2̄ 3̄ 4 2 1 1 1 1 1 3 1 2 2̄ 2̄ 4 2 1 1 1 1 1 3 1 2 2̄ 2̄ 3̄ 2 1 1 1 1 1 4̄ 1

1 2 1 1 1 2̄ 3̄ 4 2 1 1 3 1 2 1 1 1 2̄ 2̄ 4 2 1 1 3 1 2 1 1 1 2̄ 2̄ 3̄ 2 1 1 4̄

4 1 3 2 1 1 1 1 1 2̄ 3̄ 2 4 1 3 2 1 1 1 1 1 2̄ 2̄ 2 3̄ 1 4̄ 2 1 1 1 1 1 2̄ 2̄ 2

3 3̄ 1 1 3̄ 4 3 2 1 1 1 1 3 2̄ 1 1 3̄ 4 3 2 1 1 1 1 3 2̄ 1 1 3̄ 3̄ 4̄ 2 1 1 1 1

1 3 3̄ 1 1 1 1 1 3̄ 4 3 2 1 3 2̄ 1 1 1 1 1 3̄ 4 3 2 1 3 2̄ 1 1 1 1 1 3̄ 3̄ 4̄ 2

Let us remark on another family of maps on B, which may also be regarded as time
evolutions. For A(1)

n , it is a dual of (1) (cf [KNY]). Consider the maps T1, . . . , TL : B → B

defined by

Ti = Ri−1i · · ·R23R12PiRL−1L · · ·Ri+1i+2Rii+1,

Pi : B∨i ⊗ Bli → Bli ⊗ B∨i (6)

p ⊗ b �→ b ⊗ p.

Here Rkk+1 is the combinatorial R that exchanges the kth and (k+1)th components from the left
and B∨i = Bl1 ⊗ · · i∨ · · ⊗ BlL is B without the component Bli . It is an observation going back
to [Y] that the Yang–Baxter equation and the inversion relation of R lead to the commuting
family TiTj = TjTi . Note that Ti = Ti+1 when li = li+1.
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3. Bethe eigenvalues at q = 0

In this section, we exclusively consider the simply laced gn. Eigenvalues of row transfer
matrices in trigonometric vertex models are given by the analytic Bethe ansatz [R, KS]. In
the present case, the relevant quantity is the top term of �

(1)
l (u) ((2.12) in [KS] modified with

a parameter h̄ to fit the notation here):

Q1(u − lh̄)

Q1(u + lh̄)
(7)

at the shift (or Hamiltonian) point u = 0. Here Q1(u) = ∏
k sinh π

(
u − √−1u

(1)
k

)
, where{

u
(a)
j

}
are to satisfy the Bethe equation (equation (2.1) in [KN]). For the string solution ([KN],

definition 2.3), (7) with u = 0 tends to

�l :=
∏
jα

( − z
(1)
jα

)min(j,l)
(8)

in the limit q = exp(−2πh̄) → 0. Here z
(a)
jα is the centre of the αth string having colour a

and length j . Denote by m
(a)
j the number of such strings. The product in (8) is taken over

j ∈ Z�1 and 1 � α � m
(1)
j . At q = 0, the Bethe equation becomes the string centre equation

([KN], equation (2.36)):

∏
(b,k)∈H

m
(b)
k∏

β=1

(
z
(b)
kβ

)Aajα,bkβ = (−1)p
(a)
j +m

(a)
j +1, (9)

where H := {
(a, j) | 1 � a � n, j ∈ Z�1,m

(a)
j > 0

}
(denoted by H ′ in [KN]). Aajα,bkβ and

p
(a)
j are defined by

Aajα,bkβ = δabδjkδαβ

(
p

(a)
j + m

(a)
j

)
+ Cab min(j, k) − δabδjk, (10)

p
(a)
j =

∑
k�1

min(j, k)ν
(a)
k −

∑
(b,k)∈H

Cab min(j, k)m
(b)
k , (11)

where (Cab)1�a,b�n is the Cartan matrix of the classical part of gn. The integer ν
(a)
k is

the number of the Kirillov–Reshetikhin modules W
(a)
k contained in the quantum space on

which the transfer matrices act. In our case, the crystal of the quantum space is taken as
B = Bl1 ⊗ · · · ⊗ BlL in section 2, hence ν

(a)
k = δa1(δkl1 + · · · + δklL). To avoid a notational

complexity, we temporally abbreviate the triple indices ajα to j, bkβ to k and accordingly z
(b)
kβ

to zk , etc. Then (8) reads

�l =
∏
k

(−zk)
ρk , (12)

where ρk is actually dependent on l and is given by ρk = δb1 min(k, l) for k corresponding to
bkβ. The string centre equation (9) is written as∏

k

(−zk)
Aj,k = (−1)sj (13)

for some integer sj . Note that Aj,k = Ak,j . Suppose that the q = 0 eigenvalue (12) satisfies
�

Pl

l = ±1 for generic solutions to the string centre equation (13). It means that there exist
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integers rj such that
∑

j rjAj,k = Plρk , or equivalently

rj = Pl

det A[j ]

det A
, (14)

where A[j ] denotes the matrix A = (Aj,k) with its j th column replaced by t (ρ1, ρ2, . . .). In
view of the condition ∀rj ∈ Z, the minimum integer value allowed for Pl is

Pl = LCM

(
1,

⋃
k

′ det A

det A[k]

)
, (15)

where LCM stands for the least common multiple and ∪′
k means the union over those k such

that A[k] 	= 0. The determinants here can be simplified by elementary transformations (cf
[KN], equation (3.9)). The result is expressed in terms of determinants of matrices with indices
in H:

Pl = LCM

(
1,

⋃
(b,k)∈H

′ det F

det F [b, k]

)
, (16)

where the matrix F = (Faj,bk)(a,j),(b,k)∈H is defined by

Faj,bk = δabδjkp
(a)
j + Cab min(j, k)m

(b)
k . (17)

The matrix F [b, k] is obtained from F by replacing its (b, k)th column as

F [b, k]aj,cm =
{
Faj,cm, (c,m) 	= (b, k),

δa1 min(j, l), (c,m) = (b, k).
(18)

The union in (16) is taken over those (b, k) such that det F [b, k] 	= 0. See also the remark
before conjecture 1 in section 4.

The LCM in (16) can further be simplified when gn = A
(1)
1 and ν

(1)
j = Lδj1. We write

m
(1)
j , p

(1)
j , F [1, k] just as mj, pj , F [k] and parameterize the set H = {j ∈ Z�1 | mj > 0} as

H = {(0 <)J1 < · · · < Js}. The matrix F [k] is obtained by replacing the kth column of F by
t (min(J1, l), min(J2, l), . . .). A direct calculation leads to

det F = pJ0pJ1 · · · pJs−1 , (19)

det F [k + 1] − det F [k] = pJ0pJ1 · · ·pJs−1pis (ik+1 − ik)

pik+1pik

, 0 � k � s − 1, (20)

where we have set ik = min(Jk, l), J0 = 0, i0 = 0, p0 = L and det F [0] = 0. (ik here is not
related to those in table 1.) Substituting (19) into (16) and using the elementary property of
LCM, we find

Pl = LCM
(

1,
det F

det F [1]
,

det F

det F [2]
, . . . ,

det F

det F [s]

)
= LCM

(
1,

det F

det F [1]
,

det F

det F [2] − det F [1]
, . . . ,

det F

det F [t + 1] − det F [t]

)

= LCM

(
1,

t⋃
k=0

′ pik+1pik

(ik+1 − ik)pis

)
, (21)

where 0 � t � s − 1 is the maximum integer such that it+1 > it .
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4. Dynamical period

In this section, we shall exclusively consider the A(1)
n case although parallel results are expected

for D(1)
n . When l → ∞, one puts ik = Jk and t = s − 1 in formula (21). Eventually, the

resulting expression coincides with equation (4.24) in [YYT], which gives the period of
generic paths in the periodic box–ball system containing mj solitons of length j . Here by
generic is meant the absence of an ‘effective translational symmetry’ [YYT]. In the present
framework, it corresponds to the time evolution Tl=∞ of the basic periodic A

(1)
1 automaton,

i.e., gn = A
(1)
1 , ν

(a)
j = Lδj1.

To generalize such a connection, we invoke the combinatorial version of the Bethe ansatz
explored in [KKR, KR]. Given a highest path, namely an element p ∈ B such that ẽip = 0
for 1 � i � n, one can bijectively attach the data (m(a), r(a))na=1 called rigged configuration.
Here m(a) = (

m
(a)
j

)
is a Young diagram involving m

(a)
j rows of length j and r(a) = (

r
(a)
j

)
stands for an array of partitions attached to each ‘cliff’ of m(a). |m(a)| is equal to the number
of letters a + 1, a + 2, . . . , n + 1 contained in the corresponding path p. The separate data
(m(1), . . . , m(n)) and (r(1), . . . , r(n)) are called configuration and rigging, respectively. They
obey a special selection rule originating in the string hypothesis. Namely, p(a)

j defined by (11)

must be non-negative and the maximum part of the partition r
(a)
j is not greater than p

(a)
j for

any (a, j) ∈ H . It is known that det F > 0 ([KN], lemma 3.7) for any configuration. Time
evolutions of a highest path are not highest in general. Let Ph(m) ⊆ B be the set of highest
paths whose configuration is m = (m(1), . . . , m(n)).

Conjecture 1. For a highest path p ∈ Ph(m), suppose that T k
l (p) exists for any k ∈ Z�1.

Then the dynamical period of p (minimum positive integer k such that T k
l (p) = p) is equal to

Pl (16) generically, and its divisor otherwise.

Naturally, we expect �
Pl

l = 1, which can indeed be verified for A
(1)
1 . Conjecture 1

implies that the generic period is a function of the configuration only and does not depend
on the rigging. We have abruptly combined the Bethe ansatz results in two different regimes.
The first one in section 3 is at q = 0 [KN], whereas the second one explained here is relevant
to q = 1 [KKR, KR]. Conjecture 1 has been confirmed for all the highest paths in B⊗L

1
with L � 9 and all the sln�4 highest paths in Bl1 ⊗ · · · ⊗ BlL with l1 + · · · + lL � 7. It was
observed that non-generic cases are pretty few and T k

l (p)(k � 1) exists for any highest p in
case B = B⊗L

1 .
Let us present a few examples of conjecture 1. To save the space, 12 ⊗ 224 is written as

12 · 224, etc, and furthermore, · is totally dropped for the basic periodic automata. In each
table, the period under Tl with maximum l is equal to that under T∞. The last table is a
preliminary report on the D(1)

n case.
A

(1)
1 path = 1211122122111221122, configuration = ((32211))

l LCM of = period

1 1, 19, 19, 19 19

2 1, 57, 171
22 , 171

22 171

3 1, 171, 513
22 , 513

193 513



Bethe ansatz at q = 0 and periodic box–ball systems 2559

A
(1)
1 path = 11 · 1112 · 2 · 112 · 122 · 2 · 2 · 1, configuration = ((43))

l LCM of = period

1 1, 27
2 , 18 54

2 1, 27
4 , 9 27

3 1, 9
2 , 6 18

4 1, 9, 3 9

A
(1)
2 path = 121121213322111133211, configuration = ((43111), (4))

l LCM of = period

1 1, 21, 21, 21, 21 21

2 1, 822
29 , 822

95 , 411
46 , 411

37 822

3 1, 959
22 , 959

176 , 959
169 , 959

127 959

4 1, 2877
50 , 2877

400 , 2877
820 , 2877

463 2877

A
(1)
3 path = 1 · 12 · 3 · 114 · 1 · 2 · 22, configuration = ((3111), (11), (1))

l LCM of = period

1 1, 29
5 , 29, 29

4 , 29
4 29

2 1, 58
7 , 58

13 , 116
17 , 116

17 116

3 1, 29
2 , 29

12 , 58
9 , 58

9 58

D
(1)
4 path = 1 · 12 · 1 · 223 · 42̄ · 23 · 1, configuration = ((431), (32), (2), (1))

l LCM of = period

1 1, 39
7 , 234

17 , 234
17 , 26

3 , 234
17 , 117

11 , 117
11 234

2 1, 39
5 , 117

20 , 117
20 , 13

2 , 117
20 , 117

19 , 117
19 117

3 1, 13, 26
7 , 26

7 , 26
5 , 26

7 , 13
3 , 13

3 26

4 1, 39
2 , 468

71 , 468
227 , 52

11 , 468
149 , 117

31 , 117
31 468

For instance, in the third example, configuration = ((43111), (4)) means that m(1)
1 = 3,m

(1)
3 =

m
(1)
4 = 1,m

(2)
4 = 1 and all the other m

(a)
j s are 0.

5. Size of orbit

In this section, we only consider the basic periodic A(1)
n automaton, i.e., B = B⊗L

1 . In addition
to the period under the time evolutions, the Bethe ansatz at q = 0 also leads to a formula for
the size of certain orbits in the periodic automaton. Recall the quantity

�L(m) = det F
∏

(a,j)∈H

1

m
(a)
j

(
p

(a)
j + m

(a)
j − 1

m
(a)
j − 1

)
∈ Z (22)

obtained in [KN] (equation (3.2)) (denoted by R(ν,N) therein) as the number of off-diagonal
solutions to the string centre equation. Here

(
s

t

) = s(s − 1) · · · (s − t + 1)/t!, and L and
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m = (
m

(a)
j

)
enter the right-hand side through (11) and (17) with ν

(a)
j = Lδa1δj1. In this

special case, the general identity known as the combinatorial completeness of the Bethe ansatz
at q = 0 ([KN], corollary 5.6) reads

(x1 + · · · + xn+1)
L =

∑
m

�L(m)x
L−q1
1 x

q1−q2
2 · · · xqn−1−qn

n x
qn

n+1,


qa =

∑
j�1

jm
(a)
j


 .

(23)

The left-hand side is the character of B = B⊗L
1 . The sum extending over all m

(a)
j ∈ Z�0

cancels out except leaving the non-zero contributions exactly when L � q1 � · · · � qn. For
example, when n = 2, one has �6(((3), (1))) = 6,�6(((21), (1))) = 36,�6(((111), (1))) =
18 summing up to

( 6
3,2,1

) = 60 for (q1, q2) = (3, 1), whereas �6(((1), (3))) =
6,�6(((1), (21))) = −18,�6(((1), (111))) = 12 cancelling out for (q1, q2) = (1, 3). In
this sense, �L(m) gives a decomposition of the multinomial coefficients according to the
string pattern m. It is known ([KN], lemma 3.7) that �L(m) ∈ Z�1 for any configuration,
namely under the condition p

(a)
j � 0 for all (a, j) ∈ H . Moreover, it was pointed out in

[KOTY] that expression (22) for A
(1)
1 simplified by (19) coincides exactly with equation (2.3)

in [YYT], which is the number of automaton states that contain m
(1)
j solitons with length j .

Thus, it is natural to ask what is being counted by (22) for the basic periodic A(1)
n automaton

in general.
To deal with this problem, we need to consider a more general class of time evolutions.

Let Ba,j be the crystal of the Kirillov–Reshetikhin module W
(a)
j [KMN]. The crystal so far

written as Bl is B1,l in this notation. Given a path p ∈ B = B⊗L
1 , seek an element va,j ∈ Ba,j

such that va,j ⊗ p � p′ ⊗ va,j for some p′ under the isomorphism Ba,j ⊗ B � B ⊗ Ba,j . If
such a va,j exists and p′ is unique even when va,j is not unique, we denote p′ ∈ B by T

(a)
j (p).

Otherwise we say that T
(a)
j (p) does not exist. We call p evolvable if T

(a)
j (p) exists for all

members of T := {
T

(a)
j | 1 � a � n, j ∈ Z�1

}
. For such a p, write T p = ⋃

a,j T
(a)
j (p).

We say that p is cyclic if all the paths p, T p, T 2p, . . . are evolvable. These paths form an
orbit Orb(p) := ⋃

t�0 T t (p), which is necessarily a finite subset in B. As in the previous

section, we let Ph(m) ⊆ B = B⊗L
1 denote the set of highest paths whose configuration is

m = (m(1), . . . m(n)). (Thus, Ph(m) is dependent on L.)

Conjecture 2. Given a configuration m = (m(1), . . . , m(n)), one has two alternatives: all the
paths in Ph(m) are cyclic, or all the paths are not cyclic. In the former case, the following
formula is valid:

�L(m) =
∣∣∣∣ ⋃

p∈Ph(m)

Orb(p)

∣∣∣∣. (24)

All the highest paths with length L � 5 are cyclic. The smallest example of non-cyclic
Ph(m) emerges at L = 6, which is Ph(((22), (2))) only. It consists of the unique highest path
p = 112233, which is evolvable but not cyclic. In fact, one has T

(2)
1 (p) = 213213 but in the

next step [13] ⊗ (213213) � (311223) ⊗ [13] whereas [23] ⊗ (213213) � (223311) ⊗ [23].
Here [13] ∈ B2,1 stands for the column tableau of depth 2, etc. Thus, p′ in the above sense
is not unique, meaning that 213213 ∈ T p is not evolvable, hence p is not cyclic. For L = 7,
again Ph(((22), (2))) is the unique case consisting of non-cyclic paths. We have checked
the conjecture up to L = 8, where there are five non-cyclic ones out of the 56 possible
configurations. Some examples of conjecture 2 are presented in the following table. (We
write Orb(m) = ⋃

p∈Ph(m) Orb(p), which also depends on L.)
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L m �L(m) = |Orb(m)|
6 ((3)) 6

6 ((21), (1)) 36

6 ((1111), (11), (1)) 12

7 ((31), (1)) 56

7 ((221), (21), (1)) 63

7 ((2111), (21), (1)) 133

7 ((2111), (111), (11), (1)) 112

8 ((111111), (1111), (11)) 4

8 ((2211), (211), (11), (1)) 192

8 ((21111), (211), (11), (1)) 304

For example, in the third case L = 6,m = ((1111), (11), (1)), one has

Ph(m) = {121234, 123124, 123412},
Orb(m) = {121234, 123124, 123412, 124123, 212341, 231241,

234121, 241231, 312412, 341212, 412123, 412312}. (25)

6. Summary

In this paper, we have constructed new periodic soliton cellular automata and studied them
by a novel application of the Bethe ansatz. Section 2 contains the definition of the periodic
automata associated with any non-exceptional affine Lie algebra gn. Local states range over
the crystal Bl of gn and the time evolution (1) is a translation in the extended affine Weyl
group. In section 3, we have shown that Bethe eigenvalues at q = 0 become a 2Pl th root
of unity, where Pl is explicitly given by formula (16). In section 4, Pl is conjectured to
yield the dynamical period of the A(1)

n automata if F and F [b, k] in (16) are specified by the
combinatorial Bethe ansatz [KKR, KR]. In section 5, the Bethe ansatz character formula (23)
is found to measure the size of orbits of the automata as in conjecture 2.
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